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a b s t r a c t

An approach based on investigating the energy functional is applied for the first time to the classical
problem of Rayleigh waves in an anisotropic half-space with a free boundary. The main object of the
investigation is an ordinary differential operator in a variable characterizing the depth. An investigation
of the spectrum by variational methods enables a new proof to be given of the existence of a Rayleigh
wave in a linear elastic half-space with arbitrary anisotropy, which does not rest on the Stroh formalism.
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1. Introduction

Rayleigh1 discovered that a non-dispersive surface wave – a linear combination of two non-uniform plane waves, longitudinal and
transverse, can propagate on the free surface of a homogeneous isotropic elastic half-space, travelling along the boundaries more slowly
than the corresponding uniform waves and hence attenuating exponentially with depth. Rayleigh’s arguments (which were given a rigorous
form in Ref. 2) where based on an explicit form of the dispersion equation.

In the Twentieth Century a large number of papers were devoted to surface waves. The extension of the Rayleigh wave to the an
isotropic case (known as a Rayleigh or subsonic surface wave) is a linear combination, generally speaking, of three non-uniform plane
waves, propagating in a specified direction along the boundary move slowly than all uniform plane waves. It is difficult to investigate
the dispersion equation for anisotropy of general form, characterized by 21 elastic parameters. The existence and uniqueness (and also
the non-existence and non-uniqueness) of Rayleigh waves was reported on the basis of a numerical analysis for different directions and
different types of anisotropy (see, for example, Ref. 3). The first general result was obtained by Barnett and Lothe,4 who established, in the
case of arbitrary anisotropy, the existence of a unique Rayleigh wave (apart from a constant factor) for any direction of propagation along
the surface. An additional “generic condition”4 arose for the first time: the slowest uniform plane wave in a given direction should not
satisfy the stress-free condition.

The proof, outlined in Ref. 4 and then in more detail in Ref. 5–7, is based on the “Stroh formalism”,8 i.e., on specific examples of the
investigation of a naturally occurring algebraic system. The Stroh formalism was the main instrument of the theory of surface waves in
isotropic elastic, piezoelectric magnetostrictive, etc. media (see, for example, the reviews in Refs 7 and 9). Its relation to the basic methods
of modern mathematical physics, which rest on variational ideas, is not being considered. Recently there has been increased interest in
finding an alternative to the Stroh formalism (see, for example, Ref. 10, where a new proof of the uniqueness of the Rayleigh wave is given).

In this paper we apply classical considerations, related to the principle of a minimum of the energy functional,11 which goes back to
Rayleigh, to the problem of surface waves. We describe the principles of the variational approach to analysing Rayleigh waves and, as
an example of its application, we give a new proof of the Barnett - Lothe theorem of the existence of a Rayleigh wave for the case of
arbitrary anisotropy. Unlike the Stroh formalism, in which the horizontal component of the slowness vector plays the role of the spectral
parameter, and a basically difficult eigenvalve problem arises for the quadratic operator beam, an eigenvalue problem of the classical
form is investigated in which the frequency is the spectral parameter. Hence, the approach used possesses much greater generality than
the Stroh formalism. It can be applied, in principle, to inhomogeneous media (in particular media that are periodic with respect to the
longitudinal variable and with respect to the depth), and also enables the existence of a Rayleigh-type wave travelling along the edge of
an elastic wedge13 to be proved.
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The central object in this approach is an ordinary differential operator in the variable characterizing the depth. The existence of a
Rayleigh wave, equivalent to the presence in this operator of an eigenvalue in a certain interval, is proved by variational methods. The
presence in the operator of a continuous spectrum, related to uniform plain waves, leads to difficulties of a technical nature (similar to those
encountered earlier in Refs 14, 15 and 16). Here it is important that the condition that the boundary should be stress-free belongs to the
class of conditions called “natural conditions” in the variational calculus. Further, after formulating the problem and the necessary factors
from the theory of plane waves, we consider the homogeneous problem and we costruct, as a Friedrichs expansion, the corresponding
differential operator, self-conjugate to the operator L. We establish that its continuous spectrum lies to the right of a certain positive
number ��2∗ , which is defined in terms of uniform plane waves. Finally, we prove that the operator L has at least one eigenvalue inside
the interval (0, ��2∗ ). The presence of an eigenvalue can easily be reformulated as the existence of a Rayleigh wave.

2. The equation and boundary conditions

Using the linear theory, we will consider elastic waves in a homogeneous anisotropic half-space with a free boundary. The points are
characterized by Cartesian coordinates x = (x1, x2, x3), x3 ≡ z). The displacements U(x) = (U1(x), U2(x), U3(x)), harmonic with an angular
frequency � > 0, are described by the equations of the theory of elasticity

(2.1)

in a half-space z > 0; � = const > 0 is the volume density of the medium. The elements of the matrix of the differential operator L are defined
by the differential expressions

(2.2)

Here cpqrs are real elastic constants, which possess the usual symmetry3

(2.3)

and which satisfy the condition that the strain energy is positive,3 i.e.,

(2.4)

for a certain C > 0, for any non-zero symmetric tensor with components fpq, where the bar denotes complex conjugation, and summation
from 1 to 3 is carried out over repeated subscript Latin indices. The condition for the boundary to be stress-free is satisfied, namely,

(2.5)

3. Uniform and non-uniform plane waves

Plane waves, i.e., the solutions of Eq. (2.1)

(3.1)

in the whole of space, will play an important role in what follows. The wave vector k = (k1,k2,k3) and the polarization vector a = (a1,a2,a3)
are constant and, generally speaking, complex. The solutions with real k are called uniform plane waves, and solutions with complex k are
called non-uniform plane waves.

Substitution of expressions (3.1) into Eq. (2.1) gives the following system of linear equations

(3.2)

where A = A(k) is a matrix with elements

(3.3)

For a real wave vector k the matrix a is real and, as a consequence of condition (2.4), is positive definite. The condition for system (3.2) to
be solvable, i.e., the dispersion relation

is a sixth-order algebraic equation in � for specified k; it is difficult to investigate it in the general case.
For simplicity, we will henceforth consider the propagation of waves along the x1 axis only, by putting

(3.4)

while k1 will take only real positive values.
We will fix �. The vector s = k/�, which is obviously independent of �, is called the slowness vector of the plane wave.3 A consequence

of condition (3.4) is s = (s1,0,s3). The quantity s1 = k1/� is called the horizontal slowness. Uniform plane waves do not exist for fairly large
values of the horizontal slowness k1/� (this follows, for example, from the bounded nature of the slowness surface, see Ref. 3). If s∗

1 = k∗
1/�

is the largest value of the horizontal slowness for uniform plane waves, then, obviously, plane waves with k1 > k∗
1 are non-uniform, i.e.,

they attenuate or grow as z increases. Growing solutions are of no interest here.
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4. The traditional approach

We fix �. A Rayleigh wave, attenuating exponentially with depth z, can be sought in the form of the sum of three non-uniform plane
waves

(4.1)

with wave vectors k(1), k(2) and k(3), for which the horizontal slownesses are the same and equal to k1/�, k1 > k∗
1; k(j) = (k1, 0, k(j)

3 ). Here

a(j) are the normalized polarization vectors and �(j) are the required coefficients. When Im k(j)
3 > 0 (j = 1, 2, 3) expression (4.1) increases

exponentially as z increases. The existence of a Rayleigh wave is equivalent to the possibility of obtaining a value of k1 in the range (0, k∗
1),

such that the quantity (4.1) satisfies the stress-free condition (2.5). Then cR = �/k1 will be the phase velocity of the Rayleigh wave.
In this approach the quantity k1, which occurs in the problem in question in a quadratic form, plays the role of the spectral parameter.

No effective general methods of investigating these problems are known. The algebraic system for k1 was investigated in a virtuoso manner
using an artificial method in Refs 4 and 6.

We will use a different approach here: we will fix k1, choose � as the spectral parameter and arrive at an eigenvalue problem of classical
form, which we will investigate using standard approaches.

5. The minimum frequency of uniform waves along the x1 axis

We will consider system (3.2) as a problem of determining the eigenvalues � = ��2, in which k1 and k3 are parameters.
We fix the real k1 and we will confine ourselves for the present to real k3. We will denote the eigenvalues of the matrix A(k) (they are

obviously positive) by �(1)(k3), �(2)(k3), �(3)(k3) numbering them so that �(1)(k3) ≤ �(2)(k3) ≤ �(3)(k3). The following obviously exists

(5.1)

Suppose k3* is the value of k3 (possibly not unique), for which this minimum is reached, and a* is the corresponding eigenvector of the
matrix A, which can be chosen to be real. We put

(5.2)

When � > �* (for fixed k1) uniform plane waves exist, while when � < � they do not exist.
The expression under the summation sign in (4.1) is the solution of a certain ordinary differential equation in the variable z. This equation,

together with the boundary condition arising from equality (2.5) produces a self-conjugate operator. It has a continuous spectrum in the
range (��2∗ , ∞), related to uniform plane waves, and an eigenvalue inside the interval (0, ��2∗ ). The corresponding eigenfunction decreases
exponentially as z → ∞ and describes a Rayleigh wave.

6. The one-dimensional problem and the corresponding energy quadratic form

We will consider the solution of problem (2.1), (2.5) of the form

(6.1)

where k1 > 0 is a fixed real number. From relations (2.1) and (2.5) we obtain a boundary-value problem for the ordinary differential equation

(6.2)

(6.3)

Here

(6.4)

This is a typical eigenvalue problem.
Differential relations (6.2) and (6.3) generate, in a natural way, a positive self-conjugate operator in the space L2(0, ∞) of vector functions

with scalar product

(6.5)

We will introduce into the finite infinitely differentiable vector functions, which satisfy condition (6.3), the symmetrical operator L̂, acting
in accordance with the rule L̂u = Lu, and we will Friedrichs extend it in a standard way (see, for example, Ref. 11) up to the self-conjugate
operator, which we will denote by L.
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We will relate the energy quadratic form E to problem (6.2), (6.3). We multiply (6.2) by ū and, integrating by parts, we obtain

(6.6)

where

(6.7)

and the quantity

(6.8)

is obtained from the doubled potential energy density cjklm∂juk∂lum by replacing ∂1 by ik1 (terms, linear in k1, cancel out by virtue of
symmetry conditions (2.3)).

The form E (6.7), (6.8) can be extended to the space H1(0, ∞) of vector functions, quadratically symmetrical together with all the first
derivatives. This follows from the one-dimensional analogue of the Korn inequality

(6.9)

(which can easily be derived from the classical Korn inequality, see Ref. 17, or verified directly in this simple case). The self-conjugate
operator, corresponding to the closed positive form E, which we will denote by L, is also a Friedrichs extension11 of the operator L̂.

7. The variational principle

The lower limit �(L) of the spectrum (in the case considered, this is the least eigenvalue) of the positive operator L can be found from
the variational principle18, which goes back to Rayleigh,

(7.1)

(u /= 0 belongs to the region of definition of E). For boundary conditions (6.3), which belong to the class of conditions called natural
conditions in the variational calculus, we can use the classical form of the Rayleigh variational principle

(7.2)

Unlike functional (7.1), here it is not required to satisfy boundary conditions (6.3).
We will explain this point, which will be important later. We will assume that the minimum of functional (7.1) is reached on the

twice differentiable function u0 and is equal to ��2. This is equivalent to the condition that the first variation of functional (7.1) vanishes,
integrating by parts in which we have

(7.3)

Here E(u, �) is a bilinear form, obtained from the quadratic form of the energy (6.7) by replacing ū by �̄, while the function � = �(z) is
arbitrary (� = H1(0, ∞)), which, as is usual for the variational calculus,11 implies satisfaction not only of the equation Lu0 − ��2u0 = 0
but also of the boundary condition (6.3). In this discussion, which is typical for the variational calculus, the need for the function u to be
smooth, in order to carry out integration by parts, is not substantiated (otherwise, this proof would be quite simple, see Ref. 11) and the
existence of the element u0 on which an infimum is realized, is not proved. The proof of this, which is complicated by the presence of a
continuous spectrum in the operator L, is given below.

8. The continuous spectrum of the operator L

It is natural to expect that the quantity ��2∗ , introduced by equalities (5.1) and (5.2) when considering uniform plane waves, will be the
lower limit of the continuous spectrum of the one-dimensional operator L.

Theorem 1. The interval (−∞, ��2∗ ) does not contain points of the continuous spectrum of the operator L.

The proof of this assertion is based on the following estimate.

Lemma 1. The following inequality holds for any vector-function u = u(z) ∈ H1(0, ∞)

(8.1)

where the constant C1 is independent of u.
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Proof. Suppose �1 = �1(z) and �2 = �2(z) are smooth real truncating functions, defined for −∞ < z < +∞, such that �1(z) = 0 when z < 1,
�2(z) = 0 when z > 2, and

(8.2)

Henceforth denoting a derivative with respect to z by a prime, we note that

(8.3)

As a consequence of identity (8.2)

and the middle term on the right-hand side of (8.3) vanishes in the summation. Using this, we can easily verify the identity

where � = �(z) = �′2
1 + �′2

2 is a positive function and C is a symmetric positive matrix (its positiveness follows from condition (2.4)) with
elements Cpq = Cp33q. Hence we have the estimate

(8.4)

with a constant C2 that is independent of u.
We will estimate the first term on the right-hand side of inequality (8.4). We will put w(z) = �1(z)u(z), supplement w(z) ≡ 0 for z < 0, and

introduce the following Fourier transformation z→k3

Obviously, ŵ′(k3) = ik3ŵ(k3). Using expression (6.8) and Parseval’s equality

we obtain

Now we have Aŵ · ¯̂w ≥ ��2∗ |ŵ|2, where �∗ = ��2∗ in accordance with Eqs. (5.1) and (5.2). Using Parseval’s equality, we obtain

which, together with inequality (8.4), proves Lemma 1.
We will now prove Theorem 1. Following the well-known scheme in Refs 12 and 13, we will assume the opposite. Suppose a point ��2

1
of the continuous spectrum of the operator L exists, such that

(8.5)

Then18 in the region in which L is defined there is an orthonormalized sequence such that Lun − ��2
1un → 0 in L2(0, ∞) and, consequently,

(8.6)

The sequence un is orthonormalized in L2(0,∞), and by virtue of relations (8.6) and (6.9) terms of the sequence un are bounded in the norm
H1(0,∞). Consequently, we can choose a subsequence unp , which converges to zero in L2(0,2). For this we can rewrite relation (8.6) in the
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form

(8.7)

At the same time, it follows from inequality (8.1) that the left-hand side of relation (8.7) is not less than ��2∗ , whence �2
1 ≥ �2∗ , which

contradicts condition (8.5).

9. The discrete spectrum of the operator L

Suppose a* is the eigenvector of the matrix A, corresponding to the eigenvalue ��2∗ (see Section 5). We will introduce the vector functions

They satisfy Eqs. (2.1) and (6.2) respectively (but in the generic case they do not satisfy the boundary conditions when z = 0). The equalities

(9.1)

are equivalent. It is obvious that U* is a uniform plane wave, propagating in the direction (k1, 0, k3) with the least possible frequency for a
fixed value of k3.

Theorem 2. If

(9.2)

then the interval (0, ��2∗ ) contains (at least one) eigenvalue of the operator L.

By virtue of Theorem 1 it is sufficient to establish that �- (L) < ��2∗ , i.e., that the form

(9.3)

is not positive. To do this we consider its values in the sequence

(9.4)

Lemma 2. The following inequality holds

(9.5)

For the proof we note that definitions (9.4), (9.3) and (6.8) give

(9.6)

It follows from definition (6.8) that

(9.7)

The sum of the terms in the braces, not containing the factor n−2, is equal to A(k∗)a∗ · a∗ = ��2∗
∣
∣a∗

n

∣
∣
2

and is independent of z. As a result,
equality (9.6) takes the form

(9.8)

where C is a symmetric positive matrix, indicated when proving Lemma 1. The constants in inequalities (9.5) and (2.4) are obviously
connected by the relation const = C/2.

We will now prove Theorem 2. If the form B(·, ·) is positive, then, for any vector functions u = u(z) and � = �(z) from H1(0, ∞), the
Cauchy - Bunyakovskii inequality holds, i.e.,

While substituting u = u∗
n here and using inequality (9.5) it can be shown that

(9.9)
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At the same time, integration by parts in Eq. (9.3) gives

(9.10)

It follows from inequality (9.9), by virtue of the arbitrary nature of � in Eq. (9.10), that

and from relations (9.4) and (6.4) we have

Hence, Tu∗|z=0 = 0, which, due to the equivalence of Eqs. (9.1), contradicts the condition of the theorem. Hence, the form B(·, ·) is not
positive. Consequently, the functional E (u, u)/(u, u) takes values in the range (0, ��2∗ ). It follows from this18 that the operator L has a
spectrum (discrete, in view of Theorem 1) in the range (0, ��2∗ ).

The theorem is proved.
We have thus obtained the following result.
Suppose s∗

1 = k∗
1/� > 0 is the greatest horizontal slowness of uniform plane waves with wave number k = (k1, 0, k3). If the generic

condition is satisfied, i.e., the plane wave with the last phase velocity U* (9.1) does not satisfy the condition for the boundary to be
stress-free (2.5), a Rayleigh wave of the form (4.1) exists with horizontal slowness 1/cR = s1, which satisfies the condition s1 > s∗

1.
The condition for the phase fronts to propagate along the x1 axis (3.4) plays no role, and the wave vector of the form k = (k1, 0, k3) can

be replaced by any vector k = (k1, k2, k3).
The Barnett - Lothe existence theorem has been proved using only fundamental ideas of modern mathematical physics and the apparatus

of the theory of operators.
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